Fixed points of commuting holomorphic mappings other than the Wolff point

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed Points of Commuting Holomorphic Mappings Other than the Wolff Point

Let ∆ be the unit disc of C and let f, g ∈ Hol(∆,∆) be such that f ◦ g = g ◦ f . For A > 1, let FixA(f) := {p ∈ ∂∆ | limr→1 f(rp) = p, limr→1 |f ′(rp)| ≤ A}. We study the behavior of g on FixA(f). In particular, we prove that g(FixA(f)) ⊆ FixA(f). As a consequence, besides conditions for FixA(f)∩FixA(g) 6= ∅, we prove a conjecture of C. Cowen in case f and g are univalent mappings.

متن کامل

Fixed Point Indices and Periodic Points of Holomorphic Mappings

Let ∆ be the ball |x| < 1 in the complex vector space C, let f : ∆ → C be a holomorphic mapping and let M be a positive integer. Assume that the origin 0 = (0, . . . , 0) is an isolated fixed point of both f and the M -th iteration f of f . Then for each factor m of M, the origin is again an isolated fixed point of f and the fixed point index μfm(0) of f m at the origin is well defined, and so ...

متن کامل

Commuting semigroups of holomorphic mappings

Let S1 = {Ft}t≥0 and S2 = {Gt}t≥0 be two continuous semigroups of holomorphic self-mappings of the unit disk ∆ = {z : |z| < 1} generated by f and g, respectively. We present conditions on the behavior of f (or g) in a neighborhood of a fixed point of S1 (or S2), under which the commutativity of two elements, say, F1 and G1 of the semigroups implies that the semigroups commute, i.e., Ft◦Gs = Gs◦...

متن کامل

Fixed Points of Commuting Holomorphic Maps without Boundary Regularity

We identify a class of domains of C in which any two commuting holomorphic self-maps have a common fixed point.

متن کامل

Fixed Points of Holomorphic Mappings for Domains in Banach Spaces

We discuss the Earle-Hamilton fixed-point theorem and show how it can be applied when restrictions are known on the numerical range of a holomorphic function. In particular, we extend the Earle-Hamilton theorem to holomorphic functions with numerical range having real part strictly less than 1. We also extend the Lumer-Phillips theorem estimating resolvents to dissipative holomorphic functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2003

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-03-03170-2